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« Modifications to ICOOL
« Longitudinal acceptance
o Lattice functions

« Future work
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SRORUEN Modifications to ICOOL Wy

« RF phasing: new phasemodel (2)

0 Really track reference particle to define phase
0 Zero crossing is the phase for which the reference partailesgno
energy
0 Add the cavity’s phase to that, integrate reference partilolough
filelds to get energy gain
0 Only works in restricted circumstances
0 Assumes reference particle is on axis
0 Only works for a couple of accel models
0 Only works for fixed step size
0 Code can be added to fix all these. ..
« New ACCEL model (13): open hard-edge pillbox cavity

0 Constant longitudinal profile, sinusoidal
0 Has hard-edge focusing on ends (can be turned off for eitiedr e
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[BROOKHRUEN Modifications to ICOOL (cont.) Wy

« New SOL model (8): hard-edge solenoid
0 Simple fields: runs fast (10K particles in a few minutes)!
0 Bg constant, delta-functioB, on ends (can be selectively turned off)

0 Extra radially symmetric defocusing on ends
0 Focusing strength is proportionalfgg

L L E
L/O Bgds < (/O ]Bs\ds>

0 Difference concentrated on ends: approximate by thin lens
B
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smoomsnven  General Comments on ICOOL Run s

« Matches Alex’s computation, with one exception: | use fingiegth
cavities

0 Lower transit time factor at low energy
0 Slightly lower energy gain
0 Will have other effects (see soon)



BROOKHAVEN Longitudinal Acceptance Wy

o Start with a wide uniform longitudinal distribution
« Track to end, keeping only particles within 1/2 bucket ofpafticle

« Plot: particles that make it to end (red), same particleggiriming
(blue)

o Ellipses: 150 mm acceptance, orientation computed throutsh

0 Start at end
0 Compute covariance matrix
0 Remove particles outsidel
0 Repeat until no more particles cut

0 Remove corresponding particles at beginning, do iteraiiien
beginning distribution

0 Remove corresponding particles at end, compute covariaatex
and draw ellipses



BROOKHRAEN Longitudinal Acceptance

Muon Collaboration
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BRODKHAVEN Longitudinal Acceptance Wy

« Don’t quite get 150 mm acceptance: close at start, not queac
0 Difference from Alex: lower effective gradient at begingi(iransit
time factor)
« Possible cures

0 Start further off crest: but already pretty far off crest{}3

0 May be caused by distortion at end on crest!
0 Can check this: take snapshots at different points
0 If so, want to narrow distribution more: can we modify RF pas
profile?
0 Tighter lattice: shorter solenoids?

« Average energy is below reference particle energy (abole®)
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SR0ouRAYEN, Transverse Linear Lattice Wy

« Send small amplitude particle through ICOOL to computedfan
matrix

« Compute beta functions, beam sizes at acceptance

0 Beginning of second stage is a bit large, but not too bad

0 Plenty of room at beginning of first stage

0 Could start at lower energies
0 Longitudinal acceptance is the issue



BROOKHRUEN Beta Functions Wy
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[BROOKHAVEN Beam Size 4y
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BROOKHRVEN Continued Work Wy

« Fix the longitudinal acceptance

0 Or demonstrate that we can live with it (e.g., subsequenéeBys
transmit the distorted phase space)

« Check for emittance growth (tracking done, analysis not)
« Use more realistic solenoid model: nonlinearities
« Model remaining components (I have the dogbone linac...)

12



[BROOKHRUEN Outline: FFAG Designs

« Review of optimization process

« Review of previous results

« Updated Cost Model

« Characteristics of optimal lattices

o Minimum cost rings

« Decay cost

« Parametric dependencies of lattices
« New lattices

« Remaining work

« Conclusions
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BROOKHAVEN Review of Optimization Process 4y

oooooooooooooooo

« Muon FFAG lattices consist of several identical cells of aipatar type
(doublet, FDF triplet, FODO)

« Assume 201.25 MHz RF
o A drift of at least 2 m is specified for the RF cavity

0 Purpose: keep field on superconducting cavities below 0.1 T
« Leave 0.5 m of space between magnets in doublet/triplet

« Time-of-flight vs. energy is parabolic-like; set height @frabola at min
and max energy to be same

« For longitudinal acceptance, constraia= V/(wATAFE)

0 AT Is height of parabola (one turr;, is total voltage installed

0 Value ofa depends on energy range, empirically chosen, increases
with decreasing energy

« Factor of 2 in energy: 2.5-5 GeV, 5-10 GeV, 10-20 GeV
14
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Time-of-Flight Deviation per Cell (ps)

Time-of-Flight vs. Energy
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SR0ouRAYEN, Review of Previous Results of Wy
Optimization

« Doublet lattice is most cost effective
0 Triplet lattice has lowest voltage requirement, but
0 Three magnets per cell drives up magnet cost
0 Difference FD— FDF — FODO is around 5% each

« Cost per GeV of acceleration increases rapidly as energgdses
0 2.5-5 GeV of questionable cost value for muon acceleration
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[BROOKHRUEN Updated Cost Model (Palmer) Wy

« Compared to previous model
0 Cost at zero field for fixed magnet size does not go to zero
0 A new symmetry factor (quad/dipole/combined function)ssd

0 Proportional to amount of coil needed
0 Factor is identical for dipoles and quadrupoles
0 Factor is less than 1 for combined function

« Basic formula: product of 4 factors
B(B)fa(R, L) fs(B—/By)fx(n)

0 fp: dependence on field
0 fo: geometric dependence: magnet length

0 fo: symmetry dependence
0 fn: dependence on number of magnets being made
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BROOKHAUEN Updated Cost Model (cont.) Wy

o For linear midplane field profilé, = Bg + Bz,
B+ = |Bo| £ |B1| krR
« Peak field and larger radius it requires
B =By +|Bi|kceBy  R=kpR+kyB
« The factors
fB(B) =Co+C1B"5  fa(R,L) = R(L + kgRR)

D=1+B_/By)/2 Q=(1-B_/By)/2=1—-D

~ J§ |Dcost + Q cos d| do

fs(B=/B+) = B ol o fa(n) = (no/n)*™
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BROOKHAVEN Updated Cost Model (cont.) Wy
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smomainven  Characteristics of Optimal Lattices 4%,

« For modest lengths, lattice (magnet+linear) cost decsaagh
Increasing circumference

0 Reduced dispersion reduces aperture requirement

0 Remarkably, this cost reduction is goes down more quickdyth
iInversely in the number of cells

0 At some point, this stops as the nonzero transverse bearsteethe
decrease in the aperture

0 The minimum-cost solution does not have every cell fillechvirt!
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Cost (PB)

Costs vs. Number of Cells
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BROGKHRUEN, Decay Cost 4y

Muon Collaboration

« The minimum cost rings are extremely long
0 Decays are unacceptably high
« Need to incorporate tradeoff between decays and cost ofesiatien
Into optimization
0 Simplest thinking: can always make detector larger to mgk®ulost
particles
0 Multiply detector cost by fractional loss

0 Over-simplifies things (e.g., as detector gets largertifvaal increase
Costs more)

0 Baseline: detector costs 500 PB
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Soomiae Parametric Dependencies Wy

« Cost vs. decay cost
0 For low decay cost, ring is partially filled

0 As decay cost increases, ring optimized to reduce decay

0 More RF
0 Ring shortens

0 Once ring Is filled, can’t increase RF or shorten ring easily

0 Ring shortens slightly: magnets shorter, higher field
0 To get little gain, large increase in cost
0 Detector cost increases more rapidly at this point

0 Higher gradient, can go longer before ring is filled
0 Total cost steadily increases with increasing decay cost
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FFAG Cost (PB)

FFAG Cost vs. Decay Cost
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Total Cost vs. Decay Cost
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srooxnrven — Marginal Detector Cost vs. Decay Cost 4%

Muon Collaboration
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[BRODKHAUEN Cost vs. Gradient Wy

» Use 5 PB/% for the muon cost

« Relatively weak dependency: higher gradient may not behaort

0 Assumed structure costs independent of gradient

0 Might need better surface
0 Tougher requirements on input couplers

0 Higher cryo costs
« FFAG cost increases with increasing gradient for low gnaidie
0 Total cost decreases since detector cost decreases
0 Ring is filled
0 Total voltage increases faster than cost per voltage
0 Ring circumference decreases, increasing ring cost

« Higher gradients, can partially fill ring
0 Roughly same voltage and circumference
0 Fewer cavities
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Cost vs. Gradient
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[BROOKHRUEN Cost vs. Acceptance Wy

« Strong dependence of cost on acceptance

« Primarily caused by increased magnet cost
0 Primarily coming from increased size (length and aperture)
0 Not really coming from increased fields
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Cost (PB)

Cost vs. Acceptance iy
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smooainven  Another Mind-Numbing Lattice Table 4%,

Minimum total energy (GeV) 2.5 5 10

Maximum total energy (GeV) 5| 10, 20

V/(WATAFE) 1/6| 1/8|1/12

No. of cells 50| 65| 82

D length (cm) 63| 77| 97 . : 0

D radius (cm) 13.4/10.0) 7.4 Decay cost: 5 PB/%

F length (cm) 96| 113| 140

F radius (cm) 21.2/16.3/13.1] « Choose 17 MV/m: Study 1
F pole tip field (T) 2.7 3.5 4.3 b li

No. of cavities 42| 49| 56 aseline

RF voltage (MV) 534| 620| 703 L -

Turns 27 89150 Pole.tlp fields are higher than
Circumference (m) 204| 286| 399 previously

Decay (%) 42| 5.1| 6.5 : :
Magnet cost (PB) 39.4 372 391 * 2.9-5 GeV is borderline
RF cost (PB) 30.3/35.2| 39.9

Linear cost (PB) 51| 7.1/ 10.0

Total cost (PB) 74.8/ 79.5/ 88.9

Cost per GeV (PB/GeV) 29.9/ 15,9, 8.9
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sroomnuey - Remaining Work for Optimization Wy

 Choice ofV/(wATAFE) still empirical
0 | have a method of doing this, just haven't finished the caliooihs

« Work on choice of cavity drift length and inter-magnet drift
0 Let it depend on the magnet fields/apertures? How?

« Choice of aperture: should be coupled to cooling design
o Can compute cooling cost vs. aperture when muon cost isdedlu
0 Cooling cost decreases with increasing aperture
0 Add cooling cost and acceleration cost vs. aperture
0 Presumably there is an optimum aperture
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[BROOKHREN Conclusions: FFAG Optimization Wy

« | am using an improved cost model from Palmer

« An earlier notion that magnet costs increase with increasumber of
cells was wrong. This has been addressed by including desy i the
model.

o | have a set of lattices which are optimal to my current unaading
o | can produce “optimal” lattices at will for given constrén
« There are always improvements to be made. ..
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